An intelligent quantum sensor that simultaneously detects the intensity, polarization and wavelength of light

2022-05-21 02:31:09 By : Ms. Lakita Lai

Click here to sign in with or

by Yale School of Engineering and Applied Science

A team of researchers has built an intelligent sensor—the size of about 1/1000 of the cross-section of a human hair—that can simultaneously detect the intensity, polarization and wavelength of light, tapping into the quantum properties of electrons. It's a breakthrough that could help advance the fields of astronomy, health care, and remote sensing.

Led by Fengnian Xia, the Barton L. Weller Associate Professor in Engineering and Science at Yale and Fan Zhang, Associate Professor of Physics at University of Texas at Dallas, the results are published in Nature.

Researchers have learned in recent years that twisting certain materials at specific angles can form what are known as "moiré materials," which elicit previously undiscovered properties. In this case, the research team used twisted double bilayer graphene (TDBG)—that is, two atomic layers of natural stacked carbon atoms given a slight rotational twist—to build their sensing device. This is critical because the twist reduces the crystal symmetry, and materials with atomic structures that are less symmetrical—in many cases—promise some intriguing physical properties that aren't found in those with greater symmetry.

With this device, the researchers were able to detect a strong presence of what is known as bulk photovoltaic effect (BPVE), a process that converts light into electricity, giving a response strongly dependent on the light intensity, polarization and wavelength. The researchers found that the BPVE in TDBG can further be tuned by external electrical means, which allowed them to create "2D fingerprints" of the photovoltages for each different incident light.

Shaofan Yuan, a graduate student in Xia's lab and co-lead author of the study, had the idea to apply a convolutional neural network (CNN), a type of artificial neural network previously used for image recognition, to decipher these fingerprints. From there, they were able to demonstrate an intelligent photodetector.

Its small size makes it potentially valuable for applications such as deep space exploration, in-situ medical tests and remote sensing on autonomous vehicles or aircrafts. Moreover, their work reveals a new pathway for the investigation of nonlinear optics based on moiré materials.

"Ideally, one single intelligent device can replace several bulky, complex and expensive optical elements that are used to capture the information of light, dramatically saving space and cost," said Chao Ma, a graduate student in Xia's lab, and co-lead author of the study. Explore further Researchers enhance charge density waves by moiré engineering in twisted hterostructures More information: Chao Ma et al, Intelligent infrared sensing enabled by tunable moiré quantum geometry, Nature (2022). DOI: 10.1038/s41586-022-04548-w Journal information: Nature

Provided by Yale School of Engineering and Applied Science Citation: An intelligent quantum sensor that simultaneously detects the intensity, polarization and wavelength of light (2022, May 17) retrieved 20 May 2022 from https://phys.org/news/2022-05-intelligent-quantum-sensor-simultaneously-intensity.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Physics Forums | Science Articles, Homework Help, Discussion

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.